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Cellular membranes modulate several critical functions of bacterial physiology, 

including solute diffusion and nutrient transport. Biophysical properties of phospholipids, 

as well as environmental pressures such as temperature, can have a profound effect on 

these membrane functions and the kinetics of associated enzymes. Listeria monocytogenes 

is a facultative intracellular pathogen capable of robust low temperature growth, a 

characteristic thought to be facilitated by a membrane highly enriched in branched-chain 

fatty acids (BCFAs). Mutants deficient in the biosynthesis of these fatty acids exhibit 

severe growth defects under low temperature and extreme pH conditions. Morphological 

investigations have also revealed these mutants to undergo aberrant cell division and 

separation, suggesting appropriate membrane fluidity may be integral to these processes. 

Proper cell division and bacterial morphology requires the coordinated activity of many 

membrane- and surface-associated proteins. In particular, cell wall structure, biosynthesis, 

and hydrolysis are integral components of this process, and the relationship between these 

molecular mechanisms and membrane fatty acid composition is poorly understood. This 

study seeks to elucidate potential determinants of aberrant cell division in the BCFA 
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biosynthesis-deficient mutant, MOR401. Properties of interest include autolytic rates,

susceptibility to lytic enzymes, peptidoglycan hydrolase profiles, and surface-associated 

protein profiles. No statistically significant alterations to autolytic rate were observed for 

whole cells exposed to Triton X-100, mutanolysin, or lysozyme, while EDTA-treated 

MOR401 was observed to undergo decreased autolysis relative to the wild-type. In contrast, 

crude cell walls of MOR401 were observed to lyse more rapidly than wild-type. 

Zymographic analyses revealed decreased extracellular concentrations of certain higher 

molecular weight peptidoglycan hydrolases in the MOR401 strain, as well as the absence 

of a ca. 32 kDa enzyme known to hydrolyze L. monocytogenes and Bacillus subtilis, but 

not Micrococcus luteus, cell walls. Non-covalent surface protein profiles showed several 

bands of increased intensity in the MOR401 strain, while the covalently-attached surface 

proteins display a markedly distinct profile compared to the wild-type. Some of these 

altered properties may suggest alterations to cell wall chemistry, peptidoglycan hydrolase 

profiles, or reduced access of proteins to the extracellular space. To support future 

investigations, methods for the purification of cell wall and the extraction of teichoic acid 

and peptidoglycan have been refined. These procedures will facilitate the analysis of cell 

wall chemistry, structure, and macromolecular constituents. 
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CHAPTER I 
 

INTRODUCTION 
 

Listeria monocytogenes is a Gram-positive facultative anaerobe, rod-shaped, 

non-spore-forming, highly adaptable pathogenic bacterium belonging to the low-GC 

content Firmicutes phylum (1–3). A ubiquitous organism, L. monocytogenes is 

accustomed to a saprophytic lifestyle associated with soil, plant matter, and animal 

reservoirs (1, 4, 5). A host of molecular mechanisms contribute to its robust 

environmental resilience and subsequently inform its pathogenic potential and mode of 

transmission. L. monocytogenes boasts the largest repertoire of carbohydrate transporters 

and two-component systems of any described pathogenic bacteria (6), shedding light on 

the organisms resistance to extreme pH and osmotic stress (2, 6). Importantly, L. 

monocytogenes possesses a wide growth temperature range, from an extreme of below 

zero to upwards of fifty degrees centigrade (1, 2). This array of physiological adaptations 

permits survival through many food processing techniques, highlighting its role as a 

predominantly foodborne pathogen associated with contaminated dairy products, raw 

vegetables and fruits, and processed meats (1, 7, 8). When associated with a mammalian 

host, L. monocytogenes undergoes profound regulatory alterations and adopts an 

intracellular, parasitic lifestyle (5). 

Human infection with L. monocytogenes causes listeriosis (1), a potentially severe 

disease with several distinct etiologies. While infection with L. monocytogenes remains 

1 
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fairly rare, it has a high case fatality rate ranging from 20-30%, routinely placing it 

behind non-typhoidal Salmonella as one of the leading bacterial causes of death from 

foodborne illness (3, 9, 10). Healthy, immunocompetent adults exposed to virulent strains 

of L. monocytogenes most often develop a non-invasive listeriosis which manifests as 

self-limiting gastroenteritis (7, 11). Invasive listeriosis is strongly associated with the 

immunocompromised (8), and is also prevalent in pregnant women and those at the 

extremes of age (8, 11). This form of listeriosis results in a persistent bacteremia and 

often invades the central nervous system (8, 11), resulting in meningoencephalitis (7), 

though other manifestations have also been observed (11). If infected during pregnancy, 

complications such as spontaneous abortion, stillbirth, and premature birth may result at 

fairly high frequency (7, 11). This invasive listeriosis may also pass to the surviving 

neonate, potentially developing into bacteremia or meningitis and other serious 

complications (7, 11). The high fatality rates associated with listeriosis persist even when 

accounting for appropriate antibiotic therapy (8), which typically comprises penicillin 

and ampicillin (7). The pathogenic potential of L. monocytogenes can be attributed to an 

arsenal of virulence factors promoting its intracellular lifestyle. 

As a predominantly foodborne pathogen, invasion of the mammalian host by L. 

monocytogenes typically begins in the intestines (8). Following its survival through the 

intestinal tract, one of two internalins present on the bacterial surface mediates interaction 

with E-cadherin to facilitate crossing of the intestinal barrier into the bloodstream (8, 12). 

The other internalin is critical for invasion of other non-phagocytic cells. Macrophages 

subsequently traffick blood-borne bacteria to the spleen and liver, where innate immunity 

may quell the infection or permit sustained replication (3, 8). Survival within 

2 
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macrophages is aided by the production of catalase and superoxide dismutase (1), two 

enzymes involved in disrupting reactive oxygen species produced by leukocytes. After 

invasion of the host cell, L. monocytogenes escapes the phagosome by the 

membrane-disruptive activities of listeriolysin O (LLO) and two phospholipases (3, 12). 

Expression of a hexose phosphate transporter follows escape into the cytosol and 

scavenges available sugars to facilitate robust intracellular growth (3, 5). The organism is 

further capable of intracellular propulsion via polar actin polymerization, which utilizes a 

bacterial surface component and host actin machinery (3). Actin-mediated propulsion 

allows L. monocytogenes to avoid exposure to the humoral immune system by forcibly  

penetrating the membrane barrier dividing adjacent cells (8, 12).  

To appropriately modulate the necessary physiological response to these two 

distinct lifestyles, L. monocytogenes possesses dynamic regulatory machinery. PrfA, an 

environmentally-sensitive transcriptional regulator, controls the expression of most major 

virulence factors and many metabolic components (5). Temperature regulates translation 

of the prfA transcript (3, 5), while nutrient availability of the local environment and the 

metabolism of particular classes of sugars have also been observed to modulate 

PrfA-dependent gene expression (5, 6). Through these finely-tuned responses to 

environmental conditions, L. monocytogenes is able to adapt and maximize fitness among 

an array of environments. One of the most intriguing adaptations is a profound ability to 

modify membrane fatty acid composition, facilitating low temperature growth (2). 

Cellular Membrane 

Biological membranes serve as a protein anchor for many critical cellular 

functions in addition to its role as a selectively permeable barrier (13). These membrane 

3 
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functions can be disrupted by environmental pressures which alter fluidity of the 

membrane, resulting in severe growth defects (13, 14). Temperature in particular has a 

well-known impact on membrane fluidity, where a decrease in temperature leads to 

decreased fluidity (15). Biophysical properties of membrane lipids also contribute to 

membrane fluidity, defining the temperature at which phase transitions take place (16, 17). 

The ideal membrane state is typically described as the liquid-crystalline lamellar phase, a 

state characterized by moderate disorder of fatty acyl chains within the bilayer (13, 18). 

Temperatures below the transition temperature defined by membrane lipids result in 

phase transition to a more ordered, gel-like membrane state. Many organisms have 

developed adaptive strategies to maintain ideal membrane fluidity under variable 

temperature conditions (19, 20), a phenomenon dubbed “homeoviscous adaptation” (14). 

In bacteria, modification of membrane fatty acid composition is a common strategy (17, 

19).  

Odd-numbered, branched-chain fatty acids (BCFAs) comprise an extensive 

proportion of the L. monocytogenes membrane and are thought to contribute to its robust 

adaptation to low temperature stress (21). In particular, anteiso-C15 fatty acids become 

the dominant fatty acids at the expense of anteiso-C17 when grown at low temperatures 

(22, 23). This alteration in membrane fatty acid composition is mediated by two 

mechanisms of fatty acyl chain modification: chain length shortening and alteration in 

methyl branching pattern (21). Homologous fatty acids of shorter chain length have lower 

melting points than their longer counterparts, and the same is true of anteiso- and 

iso-branched fatty acids (15, 16, 19, 24). Increased unsaturation, a common mechanism 

of adaptation in other bacteria, is not prominent in L. monocytogenes (21). Following a 

4 
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decrease in growth temperature, these lower melting point fatty acids become 

incorporated into the membrane in order to lower the phase transition temperature, 

thereby maintaining appropriate fluidity (15, 17, 21).  

Much of the work identifying anteiso-C15 as an integral component of the cold 

stress adaptation response by L. monocytogenes was performed using cold-sensitive 

transposon mutants. The cld-1 and cld-2 mutants have insertions in the branched-chain 

α-keto acid dehydrogenase (bkd) gene complex, which disrupts BCFA biosynthesis (22). 

In compensation, the membrane of the mutant strains is enriched in even-numbered, 

straight chain and iso-branched fatty acids (21). In addition to deficient low temperature 

growth, these mutants are unable to thrive under acidic and alkaline pH conditions (25) 

and have a significantly less fluid membrane than the parent strain (22, 26). These mutant 

strains are further characterized by deficiencies in adhesion (27) and are severely 

virulence attenuated (28, 29), demonstrating the physiological versatility of 

anteiso-branched fatty acids. Importantly, membrane fatty acid composition and fluidity 

can be restored by addition of 2-methybutyric acid (2MB) to the growth medium (21, 22). 

The catalyst for this project originated from observations made by PhD student 

Suranjana Sen during the course of morphological investigations into the cld-2 mutant. 

Scanning and transmission electron microscopy revealed mutant cells growing in 

moderately long chains (Figure S2), where wild-type cells grow predominantly as 

separated rods (Figure S1). The addition of 2MB to the growth medium of MOR401 

corrects this phenotype (Figure S3). Further, the polar cell wall material between 

bacterial cells appeared thickened and to have undergone incomplete separation. These 

cells also appeared to be slightly elongated. These observations suggest appropriate 

5 
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membrane fluidity may be essential for the correct assembly and function of the 

divisome. 

Cell Division 

Bacterial cell division is mediated by an array of canonical proteins which operate 

under strict spatial and temporal regulation (30, 31), the assembly of which into a 

contractile ring is termed the divisome (32). Eukaryotic tubulin (FtsZ) and actin (MreB) 

homologues are both present in rod-shaped bacteria, extensively contributing to 

maintenance of bacterial shape (33, 34). FtsZ defines the division site with the help of 

membrane-anchored protein factors (30). Penicillin-binding proteins (PBPs) which 

synthesize peptidoglycan (PGN) are recruited to the division plane by FtsZ and 

associated proteins, initiating cell wall biosynthesis at the sidewall (33). MreB 

participates in elongating the sidewall prior to contraction by FtsZ and also recruits 

hydrolytic enzymes (33, 34). In Gram-positive rods, constriction culminates in two 

daughter cells joined by a polar cross-wall (30). Peptidoglycan hydrolases (autolysins) 

then hydrolyze this wall material to yield fully separate daughter cells. The cytokinetic 

machinery itself has also been implicated in activation of certain autolytic amidases (35), 

which are responsible for severing the peptide bridge.  

Several additional membrane-associated factors are involved in the division 

process. PBPs individually play diverse roles in PGN biosynthesis and possess 

membrane-anchoring domains (36). DivIVA, a membrane protein which self-localizes to 

areas of increased membrane curvature, has species-specific functions (37). In L. 

monocytogenes, DivIVA is associated with recruitment of the autolysins p60 and MurA 

for secretion by the auxiliary secretory ATPase, SecA2 (38). SecA2 is itself a peripheral 

6 
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membrane protein (39, 40). Mutant strains deficient in DivIVA, p60, MurA, and SecA2 

all individually produce, among other phenotypes, long-chain cell morphologies (38, 41, 

42), demonstrating their integral function in daughter cell separation.  

Cell Wall 

The cell wall serves several critical functions in bacterial physiology, particularly 

in Gram-positive organisms which lack an outer membrane (43). In addition to imparting 

shape and rigidity to the cell, the cell wall provides a barrier to the internal osmotic 

pressure of the cytoplasm (44, 45). This feature alone makes cell wall integrity a prime 

concern during bacterial growth and division, as new wall material must be coordinately 

synthesized and hydrolyzed without compromising cell viability (33). This consideration 

suggests cell wall turnover and remodeling during division requires precise regulation, 

and possible spatially coupling (34), of these enzymatic processes. 

PGN is a dominant macromolecular component of the cell wall. Structurally, it is 

composed of canonical disaccharide repeat units of β-1,4-linked N-acetylglucosamine 

(NAG) and N-acetylmuramic acid (NAM) (46, 47). Certain chemical modifications to the 

PGN backbone have been identified to contribute to virulence in L. monocytogenes: 

deacetylation of NAG and O-acetylation of NAM impart resistance to host defense 

molecules and inhibit recognition by the immune system (48–50). O-acetylation has also 

been observed to regulate lytic enzymes (51, 52) and is required for appropriate cell 

separation in Bacillus subtilis (53). Peptide bridges extend from the NAM constituent and 

are cross-linked to provide structural stability (46). Cross-linking may occur directly 

between peptide moieties of the bridge or be mediated by amino acid cross-bridges (54), 

and the extent to which PGN is cross-linked has been implicated in pathogenic properties 

7 
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such as antibiotic resistance (55). The peptide bridges and cross-bridges are observed to 

undergo considerably more modifications and variability than the backbone structure (46). 

L. monocytogenes is known to possess PGN directly cross-linked through the dibasic 

amino acid meso-diaminopimelic acid (m-Dpm) (56, 57), a chemotype most prevalent in 

Gram-negative bacteria (54). This mesh-like structure simultaneously imparts rigidity to 

the cell and permits flexibility during regular metabolic processes (58). 

Aside from its structural role, PGN also serves as an anchor for cell 

wall-associated proteins and carbohydrate constituents (59). Cell wall proteins provide 

essential functions by interacting with the outside environment and host (60). These 

functions are often related to virulence, such as invasion mediated by the internalins, and 

L. monocytogenes is known to express a large repertoire of surface proteins (6, 61). 

Carbohydrates comprise the largest component of the cell wall in L. monocytogenes, of 

which teichoic acids (TA) are the dominant species (56, 62). TAs are anionic polymers 

covalently linked to PGN (WTAs) or anchored to the membrane (LTAs) (63). These 

surface factors have been implicated in a variety of processes and functions including 

antibiotic susceptibility (64), biofilm development and colonization of natural and 

artificial surfaces (65–67), horizontal gene transfer (68), and evasion of host immune 

responses (69). Importantly, these polymers have also been observed to modulate the 

activity of autolysins (70), peptidoglycan cross-linking, and, subsequently, cell division 

(70, 71). Modifications of TA, such as through D-alanylation, may also contribute to the 

control of these processes (72–74). As such, both the chemical structure of PGN and the 

influence of anionic TAs may influence the activity and localization of autolysins. 

L. monocytogenes expresses a number of enzymes with characterized 

8 
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peptidoglycan hydrolase activity (75). These enzymes cleave covalent bonds within PGN 

and function in a variety of capacities including cell growth and wall remodeling, 

separation of daughter cells, and virulence (76, 77). The most well-characterized is p60, a 

surface-associated autolysin involved in daughter cell separation and virulence (42). 

Mutant strains lacking p60 exhibit a pronounced chaining morphology and are deficient 

in actin-based motility. A related extracellular protein, p45, has autolytic activity but 

unknown function (78). The amidase Ami has been associated with virulence-related 

motility and adhesion processes (79), while the muramidase MurA functions in cell 

separation and wall turnover (41). Auto is required for the invasion of certain eukaryotic 

cells (80). Finally, IspC is a cell wall-anchored enzyme involved in virulence-specific 

adhesion (81). The hydrolytic nature of these proteins demands their strict regulation to 

ensure appropriate physiology. 

Membrane Fluidity and Cell Division 

The precise roles membrane fluidity and fatty acid composition may play in the 

cell division processes, as well as cell wall chemistry and structure, is not well 

understood. In L-form cells which lack a cell wall, membrane fluidity has been observed 

to play a role in successful cell division (82). Whether this mechanism may play a role in 

cell wall-dependent cell division is uncertain. Membrane potential, which disturbance of 

the barrier function of the membrane may compromise (13, 16), has also been observed 

to modulate the localization of several cell division proteins (83). Finally, induction of the 

cell wall remodeling pathway in yeast is associated with the response to heat stress, 

which could be linked to changes in membrane fluidity (18, 84). While these prior 

investigations may provide insight for future work, we are unaware of any studies which 

9 
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have looked at cell wall-dependent cell division in decreased membrane fluidity or fatty 

acid-deficient mutants. 

Many factors explicitly involved in the division process are membrane-bound 

proteins or have membrane-associated components. Perturbations in membrane fluidity 

which may influence activity or proper localization of these factors could result in 

aberrant division phenotypes. Alternatively, PGN and TA biosynthesis, which share some 

cellular machinery, also have several integral components associated with the membrane. 

Since these two major cell wall constituents play essential roles in the overall division 

process, their alteration may subsequently result in disturbance of the usual course of 

division or daughter cell separation. Covalent attachment of proteins to peptidoglycan is 

mediated by membrane-associated sortases and may also be a source of altered surface 

protein profiles. Membrane stress may also simply result in compensatory alterations to 

cell wall properties which interfere with cell division.  

To investigate the role membrane fluidity and fatty acid composition may play in 

cell division, we proposed to identify alterations in autolytic and cell wall properties 

associated with the BCFA biosynthesis-deficient cld-2 mutant. This mutant assembles a 

membrane of significantly different fatty acid composition and fluidity than the parent 

strain, and is subsequently observed to undergo aberrant cell division characterized by 

incomplete separation and long-chain morphology. This study seeks to document 

alterations in autolytic rates and peptidoglycan hydrolase profiles associated with the 

cld-2 mutant. We hypothesized the mutant strain will display significantly disparate rates 

of autolysis and alter expression of hydrolytic enzymes. We further sought to document 

changes in cell wall properties and chemistry which may reflect determinants of observed 

10 
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cell division defects. We hypothesized to observe significant alterations in cell wall 

chemistry and protein profiles associated with the mutant strain.  

The results of this investigation may prove invaluable to our understanding of 

bacterial physiology and cell division processes. Interplay between membrane fluidity 

and cell wall-dependent cell division remains underexplored, and this research may 

elucidate additional factors involved in cell division. Appropriate growth and division is 

integral to bacterial physiology and pathogenesis, and a more comprehensive 

appreciation of this process may assist in the study and control of these organisms. 

Coupling membrane fluidity and composition to cell wall properties may also open the 

door for synergistic treatments exploiting cell wall alterations following membrane stress. 
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CHAPTER II 

MATERIALS AND METHODS 

Bacterial Strains and Growth Conditions 

L. monocytogenes strains 10403S and its isogenic bkd transposon-insertion mutant 

MOR401 (29) were utilized to assess the effect of BCFA-deficiency on cell wall and 

autolytic properties. The wild-type 10403S strain is a member of the pathogenic 1/2a 

serotype of L. monocytogenes commonly used in the laboratory setting (85). Both strains 

were chosen due to their well-established characterization in the literature and readily 

available nature. Strain MOR401 was kindly provided by Mary O’Riordan. Strains were 

cultured in brain-heart infusion (BHI) medium (BD) and grown to mid-exponential phase, 

and experiments analyzed in triplicate. 

Whole-Cell Triton X-100 and EDTA-Stimulated Autolysis 

Overnight cultures of the respective L. monocytogenes strains were grown in BHI 

medium at 37oC with shaking at 200 rpm, with or without 2MB. Overnight cultures were 

then diluted 1:50 in fresh BHI at a flask-to-media ratio of 1:4 and allowed to grow until 

mid-exponential phase. Cells were then harvested by centrifugation at 4,000 g for 10 

minutes at 4oC and the pellet washed once in cold, distilled water. Triton 

X-100-stimulated autolysis was then performed essentially as described by Gustafson et 

al. (86), with incubation occurring at 37oC and optical density measured at OD600. 

EDTA-stimulated autolysis was performed essentially as described by Popowska (50), 

12 
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without shaking. Induction of autolysis was reported as the fractional decrease in initial 

OD over time.  

Whole-Cell Lysozyme and Mutanolysin Cell Lysis 

Mid-exponential phase cells were harvested by centrifugation at 4,000 g for 10 

minutes at 4oC and the pellet washed once in cold, distilled water. Lysozyme and 

mutanolysin induced lysis were performed essentially as described by Popowska (50), 

utilizing room temperature buffer. Cell lysis was reported by the fractional decrease in 

initial OD over time.  

Crude Cell Wall Autolysis 

Mid-exponential phase cells were harvested by centrifugation at 4,000 g for 10 

minutes at 4°C and the pellet washed once in cold, distilled water. Preparation of crude 

cell walls was performed according to established methods (87, 88). Briefly, one liter of 

culture was resuspended in 50 ml cold, distilled water and mixed with 50 ml cold glass 

beads (0.1 mm diameter, BioSpec) in a BioSpec Small Chamber Assembly. Cells were 

broken using a BioSpec Bead-Beater, with five two-minutes-on and two-minutes-off 

operation of the beater. Broken cells were applied to a sintered glass filter draining into a 

Buchner flask. A vacuum aspirator was applied to facilitate filtration. Following filtration, 

the filtrate was centrifuged at 14,000 g for 10 minutes at 4°C to recover cell walls, and 

the deposited cell walls were washed twice in cold, distilled water. A portion of this crude 

cell wall suspension was taken to analyze crude cell wall autolysis as described by Koehl 

et al. (89). Cell wall autolysis was reported as the fractional decrease in initial OD over 

time. 
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Analysis of Peptidoglycan Hydrolase Profiles 

Peptidoglycan hydrolase profiles were analyzed by renaturing SDS-PAGE, or 

zymography, essentially as described by Foster (90). Briefly, autolysin extracts were 

prepared from 50 ml of mid-exponential phase cells. Cultures were harvested by 

centrifugation at 4,000 g for 10 minutes at 4°C, and the supernatant decanted into clean 

centrifuge tubes. The cell pellet fraction was resuspended in 500 ul SDS buffer (1% 

wt/vol SDS, 1mM EDTA, 10% vol/vol glycerol, 5% vol/vol ß-mercaptoethanol, 50mM 

pH 7.5 Tris-HCl) lacking bromophenol blue to permit quantification. The suspension was 

then boiled for 10 minutes at 100°C and centrifuged at 14,000 g for 5 minutes to pellet 

insoluble material. Supernatant could be stored at -20°C for several days and retained 

autolytic activity. The supernatant fraction was incubated with trichloroacetic acid (TCA) 

at a final concentration of 10% at 4°C for 30 minutes. Precipitate was then centrifuged at 

20,000 g for 5 minutes at 15°C and washed three times in acetone. The dried protein 

pellet was then resuspended in 500 ul of SDS buffer and boiled for 3 minutes. Boiled 

sample was then centrifuged at 14,000 g for 5 minutes and supernatant stored at -20°C. 

Purified samples were electrophoresed in a polyacrylamide gel containing 0.2% (wt/vol) 

lyophilized M. luteus or L. monocytogenes cells, and then incubated overnight in 25 mM 

Tris-HCl (pH 8.0) containing 1% Triton X-100 to renature proteins. The gel was then 

stained using a 1% methylene blue, 0.01% KOH stain solution for 5-10 minutes, and 

destained over the course of several nights in deionized water. Hydrolytic enzymes were 

visualized as zones of clearing on the opaque background. 
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Analysis of Cell Surface Proteins by SDS-PAGE 

Cell surface protein profiles were assayed by SDS-PAGE. Covalent and 

non-covalently bound proteins were extracted and analyzed essentially as described by 

Carvalho et al. (91). Briefly, non-covalent proteins were extracted from 50 ml of 

mid-exponential phase cells. Bacteria were harvested by centrifugation at 4,000 g for 10 

minutes at 4°C, washed once in 20 ml PBS, then washed again in 1ml PBS. Cell were 

then harvested at 14,000 g for 5 minutes at room temperature, resuspended in 1 ml of 

PBS with 2% SDS, and incubated for 30 minutes at 37°C. The suspension was 

centrifuged at 10,000 g for 1 minute and the supernatant passed through a 0.22-um filter. 

For covalent proteins, 200 ml of mid-exponential phase cells were harvested by 

centrifugation at 7,000 g for 15 minutes at 4°C. Cells were first washed in 20ml of PBS, 

then 5 ml of mutanolysin digestion buffer (10 mM Tris-HCl pH 6.9, 10 mM MgCl2, 0.5 

M sucrose), and then again in 1.5 ml of mutanolysin digestion buffer. RNase A and 

mutanolysin were added to a final concentration of 20 ug/ml, and 30ul of 100X 

EDTA-free protease inhibitor was also added. The solution was then incubated overnight 

at 37°C with gentle agitation. After centrifugation at 14,000 g for 15 minutes at 4°C, the 

supernatant was passed through a 0.22-um filter, concentrated with TCA at a final 

concentration of 15%, and incubated on ice for one hour. Protein was precipitated by 

centrifugation at 20,000 g for 20 minutes at 4°C, washed three times in cold acetone, and 

resuspended in 50 ul of PBS.  

Optimization of Cell Wall Purification, Teichoic Acid and Peptidoglycan Extraction 

In order to facilitate further investigation into the questions posed by this study, 

the standardization of methods to extract and purify isolated cell wall components may 
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prove valuable. The methods utilized were modified and synthesized from several 

sources (87, 92–94). Overnight cultures of L. monocytogenes were reinoculated into fresh 

BHI and allowed to grow until mid-exponential phase and harvested by centrifugation at 

7,000 g for 15 minutes at 4°C. Cells were then resuspended in SM buffer (100 mM NaCl, 

10 mM MgSO4, 10 mM Tris-HCl pH7.5) and boiled for 30 minutes to kill cells. This 

buffer is suitable for the downstream analysis of D-alanylation, muropeptides, and 

inorganic phosphate. If interest is in O-acetylation, a 0.9% NaCl (pH 6.8) buffer should 

be used (95). Cells were then reharvested under identical conditions and subjected to 

mechanical breakage by a BeadBeater and 0.1mm glass beads. Breakage was performed 

by alternating six periods of machine activity and rest, each lasting two minutes. Cell 

breakage via FrenchPress at 40,000 psi was a viable alternative. Filtrate could then be 

centrifuged at 1,400 g for 5 minutes to remove much of the cellular debris, and the 

supernatant transferred to fresh tubes. Cell walls in the supernatant were then pelleted by 

centrifugation at 30,000 g for 30 minutes at 4°C, washed twice in cold, distilled water 

and then resuspended in SM buffer. This fraction contains crude cell walls (CCW) which 

may be used for autolytic assays, provided cells were not heat-killed previously.  

To obtain purified cell walls (PCW), the CCW fraction was incubated for 3 hours with 

5ug/ml DNase and RNase, and then incubated overnight with 200ug/ml trypsin to 

degrade proteins. Cell walls were then reharvested under previous centrifugation 

conditions, resuspended in SM buffer containing 4% SDS and boiled for 30 minutes to 

further remove enzymes and membrane components. PCWs were then centrifuged at 

room temperature for 30 minutes at 30,000 g and washed at least five times in room 

temperature deionize water to remove SDS. Washed cells can be resuspended in a 
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minimal volume of water and lyophilized, and stored at -20°C until needed.  

To extract PGN and TA components, PCWs were resuspended in a 25mM glycine/HCl 

(pH 2.5) buffer and boiled for 10 minutes. Boiled PCWs were centrifuged at 30,000 g for 

30 minutes, and the supernatant fraction containing TAs transferred to a clean 30ml glass 

Corex tube for storage at 4°C. This extraction was repeated twice and the supernatants 

pooled. The insoluble cell wall material is PGN from which TA has been extracted, and 

can be washed several times in cold, deionized water and lyophilized for mass 

spectrometry analysis. TA was then purified by ethanol precipitation. Ethanol (95%) was 

added to the supernatant in a 5:1 ratio, and the solution allowed to precipitate overnight at 

4°C. Precipitated TA was then centrifuged at 3,000 g for 15 minutes at 4°C, the 

precipitate resuspended in a reduced volume of buffer, and the precipitation repeated 

once. Precipitate was then harvested as before, washed three times in acetone, and 

lyophilized.  
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CHAPTER III 

RESULTS 

Triton X-100 and EDTA-Stimulated Autolysis 

To investigate the hypothesis that altered membrane fatty acid composition may 

influence autolytic rates, respective L. monocytogenes strains were grown, in the presence 

or absence of 2MB, to mid-exponential phase and harvested by centrifugation. Washed 

cells were resuspended in buffer containing 0.05% Triton X-100 or 1mM EDTA, and 

autolysis rates determined by the percent decrease in OD600 over time. Both agents serve 

to increase the permeability of the membrane, thereby inducing lysis of cells by natural 

hydrolytic enzymes. Triton X-100 is a nonionic detergent, while EDTA is a metal chelator. 

In Triton X-100-stimulated cells, no statistically significant differences in the rate of 

autolysis could be observed between the mutant strain grown in the presence or absence 

of 2MB and the wild-type (Figure 1). The MOR401 strain without addition of 2MB 

exhibited a slightly decreased rate of autolysis compared to when it was grown with 2MB 

or the wild-type, although this difference could not be shown to be statistically significant. 

In contrast, wild-type EDTA-stimulated cells were observed to lyse significantly faster 

than MOR401, with or without the addition of 2MB (Figure 2).  
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Figure 1. Triton X-100 Stimulated Autolysis 

 
Percent decrease in OD of parent and mutant strains grown with and without 2MB when 
incubated in 0.05M Tris-HCl pH 7.5, with and without 0.05% Triton X-100. 

 

Figure 2. EDTA-Stimulated Autolysis

 

Percent decrease in OD of parent and mutant strains grown with and without 2MB when 
incubated in 0.05M Tris-HCl pH 7.5 with 1 mM EDTA. 
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Lysozyme and Mutanolysin Cell Lysis 

To assess whether cell wall chemistry or structure could be altered upon 

disruption of wild-type membrane fatty acid composition, susceptibility to cell wall lytic 

enzymes was assayed. Mutanolysin and lysozyme are both muramidases capable of 

hydrolyzing the ß-1,4-linkage between NAM and NAG constituents of PGN, though they 

are known to possess certain unique activities against some bacterial species. In addition, 

lysozyme possesses cationic antimicrobial peptide (CAMP) activity independent of its 

function as a muramidase. Washed cells were resuspended in buffer containing either 

40ug/ml mutanolysin or 10ug/ml of human lysozyme. Treatment of cells with 

mutanolysin yielded no significant differences in cell lysis rates among L. monocytogenes 

strains (Figure 3); in fact, observed lysis rates were nearly identical. Likewise, lysozyme 

treatment resulted in very similar rates of lysis among strains (Figure 4). 

 

Figure 3. Mutanolysin Cell Lysis

 

Cell lysis induced by incubation with mutanolysin as measured by the percent decrease in 
OD over time. 
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Figure 4. Lysozyme Cell Lysis

 

Cell lysis induced by incubation with lysozyme as measured by the percent decrease in 
OD over time. 
 

Crude Cell Wall Autolysis 

The autolytic rate of isolated cell walls retaining functional hydrolase activity was 

also assayed to probe for potential cell wall alterations. Mid-exponential phase cells were 

subjected to mechanical breaking procedures to isolate crude cell wall material retaining 

autolytic activity. This cell wall fraction was resuspended in buffer and autolysis 

monitored by the percent decrease in OD580 over time. In comparison to the wild-type 

strain, MOR401 grown in the presence or absence of 2MB exhibited significantly 

increased autolysis rates (Figure 5).  
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Figure 5. Crude Cell Wall Autolysis

 

Autolysis rate of crude cell walls as measured by percent OD over time. 
 
Peptidoglycan Hydrolase Profiles 

In an effort to further characterize the autolytic properties of cell harboring the 

bkd mutation, peptidoglycan hydrolase profiles were analyzed by zymography. 

Hydrolases were isolated from the cellular fraction and concentrated from culture 

supernatant to account for spatial localization and secretion of autolysins. Purified 

samples were electrophoresed and renatured in paired zymograms with different 

substrates: one contained lyophilized Micrococcus luteus cells, while the other contained 

lyophilized L. monocytogenes 10403S. In the M. luteus zymogram, major hydrolytic 

bands in both cellular and supernatant fractions appear to be present in wild-type and the 

MOR401 strain grown in the presence or absence of 2MB (Figure 6). However, the 

intensity of some of these bands in the MOR401 strain, particularly the higher molecular 

weight enzymes in the supernatant fraction, may suggest differences in expression levels 
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or extracellular presence of some autolysins. In particular, an approximately 66 kDa 

enzyme appears significantly reduced in its intensity. The hydrolytic profile using L. 

monocytogenes cells as a substrate also looks fairly constant across both strains, with the 

exception of an approximately 32 kDa enzyme from the cellular fraction which is absent 

in the MOR401 strain (Figure 7). In addition, a higher molecular weight protein in the 

supernatant fraction - corresponding to approximately 104 kDa - appears to be reduced in 

intensity in the MOR401 strain grown in the presence or absence of 2MB. 

Figure 6. M. luteus-Substrate Zymography

 
Peptidoglycan hydrolase profiles analyzed via zymography with M. luteus cells. Each lane 
was loaded with 50 ug of protein 
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Figure 7. L. monocytogenes-Substrate Zymography

 

Peptidoglycan hydrolase profiles analyzed via zymography with L. monocytogenes cells. 
Each lane was loaded with 50 ug of protein 
 

Cell Surface Proteins 

Another potential indicator of cell wall alterations could be in the profiles of 

surface proteins associated with the cell wall. Traditionally, these proteins can be 

segregated into two groups: those which are non-covalently associated with the cell wall, 

and those which are covalently anchored to peptidoglycan. In the case of non-covalent 

cell wall proteins, mid-exponential phase cells were incubated with a PBS solution 

containing 2% SDS to disrupt these interactions and release these proteins. Covalently 

anchored proteins were released by the digestion of peptidoglycan with mutanolysin. The 
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profile of MOR401 non-covalent proteins appears to possess quantitative differences in 

several proteins within the 40-55 kDa range, and a distinct protein at approximately 30 

kDa was present that was not present in the wild-type (Figure 8). Covalently-attached 

proteins in the MOR401 strain also appear to display a significantly altered profile 

compared to the wild-type and MOR401 grown in the presence of 2MB (Figure 9). Bands 

of around 23 and 40 kDa appear to be enriched, while bands around 35, 55, and 70 appear 

reduced in intensity. A novel protein may be present at approximately 20 kDa. 
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Figure 8. Non-Covalent Surface Protein Profile

 

Non-covalently associated cell wall protein profiles visualized via SDS-PAGE. Each lane 
contains 150ug of protein 
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Figure 9. Covalent Surface Protein Profile 

 

Covalently attached cell wall protein profiles visualized via SDS-PAGE. Each lane 
contains 50ug of protein. 
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Cell Wall Purification and Extraction of Peptidoglycan and Teichoic Acid 

Initial attempts to purify cell walls often resulted in diminished yields or 

incompletely purified samples, prompting the desire to refine these procedures. By 

synthesizing several sources, certain steps were modified or added to improve the process 

and make it more consistent. Considering the specific goal of analyzing cell wall 

chemistry and structure, the inclusion of a boiling step ensured the inactivation of 

hydrolytic enzymes prior to protease exposure. This also improved safety through killing 

the bacteria. However, if interests are in the autolytic properties of crude cell walls, the 

boiling step should be avoided. Following breakage with the BeadBeater, care must be 

taken to avoid resuspension of insoluble debris and intact cells. To assist in this process, 

the first spin after harvesting the filtrate can be a low-speed centrifugation to pellet this 

debris, which can then be discarded after supernatant is transferred to a fresh tube. 

Incubation with nucleases and trypsin remove extraneous cellular material and proteins, 

while treatment with SDS further removes protein and membrane components. As SDS 

can interfere with downstream applications, its removal is an integral step in the 

procedure. Cold temperature causes SDS to precipitate and persist within the sample, 

necessitating room temperature reagents and conditions for wash steps. When finished, 

the cell wall purification process consistently yields 20-25mg of PCW per liter of 

mid-exponential phase culture.  

To extract TA, PCW samples were originally respended in a 5% TCA solution and 

incubated for several hours at 60°C. After centrifugation, the supernatant containing TA 

was retained and the extraction repeated twice, pooling the supernatant in a 30ml Corex 

tube kept at 4oC. Overnight incubation with ethanol was used to precipitate and purify the 
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TA, but only a negligible quantity of TA precipitate could be observed following two 

precipitations. A different extraction procedure was attempted, using a glycine/HCl (pH 

2.5) buffer under boiling conditions and for a shorter duration of time. Ethanol 

precipitation was again used to purify the TA, and the addition of ethanol produced a 

more noticeable turbidity of the solution. Little precipitate could be harvested after the 

first incubation, but resuspension of the remaining material and addition of ethanol 

produced an even greater turbidity during the second incubation. A thick white precipitate 

could be observed to adhere all around the glass, and this material could be harvested and 

washed with acetone. Ultimately, this procedure yielded a significant quantity of TA 

precipitate compared to the original method. The presence of this precipitate also 

suggested the insoluble material present following extraction could be washed and used 

as a TA-extracted PGN sample. 
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CHAPTER IV 

DISCUSSION 

 Membrane fatty acid composition and fluidity have been established as integral 

characteristics to several physiological processes, including nutrient uptake, protein 

function, and barrier properties of the membrane (13, 18). Temperature in particular is 

known to significantly impact membrane function through alterations in fluidity, and 

many microorganisms possess mechanisms to maintain appropriate fluidity under 

variable temperature conditions (15, 19, 21). In L. monocytogenes, a connection has also 

been forged between fatty acid composition and virulence (28, 29). However, the role 

these membrane characteristics may play in cell division processes remains unclear. 

Many critical factors involved in cell division and separation are associated with the 

membrane, from assembly of the cytokinetic ring to secretion of hydrolytic enzymes (30, 

33, 38). Peptidoglycan and teichoic acid, two cell wall constituents intimately involved in 

the division process, also possess biosynthetic machinery associated with the membrane 

(46, 96). As such, alterations in membrane fluidity could also modulate qualities of 

peptidoglycan and teichoic acids which, in turn, may influence appropriate cell division. 

Finally, membrane-localized sortases responsible for attachment of proteins to the cell 

wall could also be disturbed by alterations in membrane fluidity (36). Covalently-bound 

proteins may be directly impacted by this disturbance, while non-covalent cell wall 

proteins could be disturbed by structural changes in peptidoglycan.  

Our study sought to document alterations in autolytic rates, peptidoglycan 
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hydrolase profiles, and cell wall properties which may represent correlates of observed 

aberrant cell division in the BCFA-deficient L. monocytogenes mutant, MOR401. This 

mutant possesses a membrane of significantly different fatty acid composition and 

decreased membrane fluidity compared to the parent strain (21, 22). Consequently, it is 

unable to grow under low temperature (21) and extreme pH (25) conditions. During the 

course of morphological investigations into this mutant, it was observed to grow in 

moderately long chains connected by incompletely hydrolyzed cell wall material 

(unpublished observations). Further, mutant cells appeared to be elongated compared to 

wild-type cells. Addition of 2MB to the growth medium of MOR401 restored the 

wild-type morphology. These observations suggest appropriate membrane fluidity may be 

necessary for the correct assembly and function of the divisome and associated 

machinery. 

Data accumulated during our investigation provides insight into the physiology of 

decreased membrane fluidity and BCFA-deficient L. monocytogenes. In our experiments 

of autolytic rates, results of decreased, increased, and no significant alteration in autolysis 

were all observed. Autolysis induced by membrane permeabilizing agents such as Triton 

X-100 and EDTA resulted in no significant difference or a decrease in autolytic rate, 

respectively, of the mutant strain (Figures 1 and 2). In contrast, crude cell walls of the 

mutant were observed to undergo increased autolysis compared to wild-type (Figure 5). 

Changes in the autolytic rate of crude cell walls, which retain functional hydrolytic 

enzymes, may suggest an alteration to cell wall chemistry or wall-associated 

peptidoglycan hydrolase properties. Likewise, the decreased autolysis observed in 

EDTA-treated whole cells could suggest modifications to native hydrolases or their 
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respective substrates. These results suggest alterations may exist, but offer little 

clarification over the mechanism. Whole cells may also possess additional confounding 

factors to their interpretation compared to isolated cellular components: autolysins could 

become sequestered or otherwise interfered with by other cellular constituents, such as 

positively charged phospholipids or LTAs.  

Oddly, muramidase treatment of whole cells with lysozyme and mutanolysin both 

resulted in lysis rates comparable across all strains (Figures 3 and 4). These results on 

their own would suggest an absence of alteration to the glycan strand of peptidoglycan, 

which houses the target ß-1,4-linkage of these enzymes. However, Sun et al. (2012) (29) 

had previously observed both agents to reduce MOR401 viability in survival assays, 

implicating fatty acid composition in susceptibility to peptidoglycan hydrolases. Several 

explanations for our conflicting results appear possible: the conditions of our experiment 

using static, whole cells may not have been appropriate to see substantial differences 

when exposed to these surface stressors; the mechanism of observed killing in Sun et al. 

(2012) may be distinct from cell lysis; or susceptibility to these muramidases may be 

contingent upon active cellular growth and cell wall turnover. Considering the delicate 

balance between cell wall synthesis and hydrolysis necessary to maintain cell viability, 

additional stress during this process may sufficiently destabilize osmotic functions of the 

cell wall. In future experiments, assays utilizing purified cell walls lacking enzymatic 

components should be useful in isolating this phenomenon. It is also possible the 

mechanism of killing observed in Sun et al. (2012) 

To complement our experiments of autolytic rates, peptidoglycan hydrolase 

profiles were assayed by zymography. Overall, the repertoire of expressed autolysins 
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across L. monocytogenes strains appeared consistent, with the exception of a low 

molecular weight band present in wild-type but not MOR401 grown in the presence or 

absence of 2MB (Figure 7). The observed pattern of lytic bands appears highly similar to 

those obtained by McLaughlan and Foster (97), suggesting this absent band could be a 

~32 kDa enzyme. This 32 kDa enzyme appears to be species-specific and was observed 

to possess activity on L. monocytogenes and B. subtilis, but not M. luteus, cell walls (97), 

suggesting a distinct substrate specificity. Both B. subtilis and L. monocytogenes possess 

directly cross-linked m-Dpm peptidoglycan in contrast to M. luteus, which typically 

expresses an L-alanine cross-bridge linked to L-lysine and D-alanine (54, 56). This 

enzyme could therefore play a role in hydrolyzing the PGN cross-bridge, and potentially 

be involved in the cell separation processes.  

The supernatant fractions of both zymograms appear to possess quantitative 

differences in some autolytic bands, though the most prominent ones seem to be of 

distinct sizes. It is perhaps telling that, during the course of these experiments, the 

supernatant fraction of the mutant was routinely observed to produce considerably less 

precipitate relative to the wild-type (personal observation). This could suggest a decrease 

in the quantity of proteins reaching the extracellular space of the MOR401 strain. In the 

zymogram containing L. monocytogenes cells, a protein of approximately 104 kDa 

appears to show moderately decreased intensity in the mutant strain (Figure 7). One of 

the higher molecular weight peptidoglycan hydrolases of L. monocytogenes is Ami, a 

102.3 kDa enzyme (75). Ami is non-covalently attached to the cell wall (98) and 

possesses significant homology to the major S. aureus autolysin AtlA required for 

appropriate cell separation and adhesion (99, 100). However, Ami has not been 
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specifically implicated in the cell division process, making perturbation of this enzyme an 

unlikely determinant of aberrant cell division. 

In the M. luteus zymogram, the most prominent quantitative discrepancy appears 

to be associated with a band approximately 65 kDa in size (Figure 6). L. monocytogenes 

expresses two peptidoglycan hydrolases of approximately this size: the amidase Auto 

(~64 kDa) and the muramidase MurA (~66 kDa) (41, 80). Auto itself has not been 

associated with cell division processes, but mutants deficient in MurA have been 

observed to grow in long chains of unseparated cells. While the cellular fraction does not 

appear to substantially reflect this alteration, MurA is a non-covalent cell wall-associated 

enzyme whose localization and secretion by the combined actions of DivIVA and SecA2 

is known to be essential for appropriate cell division (37, 38). Therefore, the decreased 

extracellular presence of this enzyme (in addition to the major autolysin, p60) 

corresponds to a pronounced chaining phenotype. Unfortunately, p60 is reportedly not 

represented in zymograms utilizing these experimental conditions (97), making 

assessment of its role in MOR401 physiology presently impossible. Future studies 

seeking to specifically characterize hydrolytic properties of p60 may be required to 

explore alternative techniques.  

It is interesting to note the similarities and differences observed between division 

defects present in the MOR401 strain and those present in mutants of p60, MurA, 

DivIVA, and SecA2. In the latter cases, cells exhibit a pronounced chaining morphology 

of extreme length and incomplete cell separation (38, 41, 42). Division defects in 

MOR401 appear to manifest in much more intermediate-length chains, though also 

possess evidence of incomplete cell separation (Figure S2). This difference could suggest 
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the aberrant division characteristics of MOR401 be the result of physiological alterations 

which exist on a spectrum, rather than through the disturbance of a single discrete 

function. For instance, the DivIVA protein required for proper localization of the p60 and 

MurA autolysins is known to self-localize through membrane curvature dynamics (101). 

It seems possible membrane fluidity could influence the distribution of this protein by 

disturbing membrane curvature, thereby limiting the extent to which these enzymes reach 

the extracellular milieu. In the work of Halbedel et al. (2012) (38), co-culture of a divIVA 

null mutant with wild-type L. monocytogenes expressing both p60 and MurA markedly 

reduced the length of cell chains to levels more reminiscent of the MOR401 chaining 

phenotype. This could suggest proper localized concentrations of autolysin at the septum 

are necessary for appropriate separation. If supernatant concentrations of MurA or p60 

are significantly reduced in the MOR401 strain, mechanisms of its localization and 

secretion may be worth investigating. One possibility may be confocal microscopy of 

fluorescently-tagged DivIVA to investigate whether its distribution within the cell is 

altered compared to the wild-type. 

Many cell wall-associated proteins are involved in both division- and 

virulence-related functions, and sortases responsible for the covalent attachment of some 

proteins are membrane associated. Therefore, we sought to characterize the surface 

protein profiles of the MOR401 mutant. Non-covalent proteins are commonly associated 

with the cell wall through one of three mechanisms: GW (glycine and tryptophan) repeats 

which interact with LTA; hydrophobic tails which anchor to the membrane; or LysM 

repeats which interact with peptidoglycan (61). The profile of non-covalent proteins from 

the MOR401 mutant grown without 2MB appears to contain some quantitative 
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differences compared to the wild-type and MOR401 grown in the presence of 2MB 

(Figure 8.) In particular, several bands between 40 and 55 kDa appear more intense in the 

mutant. There also seems to be an area of heavier banding around 30 kDa. Alterations to 

the profile of these proteins may reflect chemical alterations to peptidoglycan or the 

influence of altered membrane dynamics disturbing proper association. 

Several hydrolytic enzymes are non-covalently associated with the cell wall, 

including Ami (GW), p60 (LysM), MurA (LysM), Auto (GW), and p45 (LysM) (75). 

Both p60 and p45 are also known to localize to the extracellular space with only a 

minority fraction appearing to remain associated with the cell surface (102), making it 

difficult to definitively discern their presence. The function of p45 is currently unknown 

(78), while p60 has a well-characterized role in cell separation and virulence (42). In 

addition, the N-deacetylase PgdA, which is predicated to undergo secretion and become 

associated with the cell wall, may be a non-covalent surface protein (50). PgdA is 

reported to have a size of approximately 52 kDa, but whether this corresponds to any 

enriched band is difficult to discern. Since N-deacetylation is known to modulate 

muramidase activity, potentially including that of MurA, alteration to this modification 

pattern could impact the physiological activity of these enzymes (49). Larger (>60 kDa) 

enzymes also appear difficult to identify in our assay, and may or may not contribute to 

the altered expression profile. Alternatively, additional or absent bands may represent 

processed or degradative products of larger proteins.  

In Gram-positive bacteria, LPXTG motifs characterize the most common covalent 

attachment mechanism of proteins to peptidoglycan (103), though other motifs are known 

to be involved. The protein profile obtained for this class of surface proteins appears to 
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exhibit significant alteration in the MOR401 strain (Figure 9). Perhaps the most notable 

of these proteins are many of those in the internalin family, particularly InlA (61). InlB is 

a non-covalent GW-motif surface protein, and the major exclusion from this 

categorization. InlA is known to be an essential factor mediating the invasion of epithelial 

cells through interaction with E-cadherin (12), and secondary internalins have been 

associated with host colonization functions (61). While Sun et al. (2012) (29) does not 

document any invasion defects related to macrophage uptake for the MOR401 mutant, 

fatty acids have been observed to modulate expression of InlA. It may therefore be 

interesting to see whether MOR401 exhibits invasion defects in non-phagocytic cells; 

however, differences in the surface protein profile may also reflect expression differences, 

rather than disturbance to the anchoring mechanism. Therefore, while changes in the 

covalent profile may indicate alterations to peptidoglycan or sortase activity, it would 

appear prudent to correlate these changes with expression levels.  

Other notable surface-associated proteins could also be disturbed in these mutants. 

The flagellar protein FlaA, involved in the expression of flagella in L. monocytogenes, is 

typically significantly attenuated at 37°C and higher at lower temperatures (1), 

demonstrating its temperature-regulated expression. It has a reported size of 30.4 kDa 

(104). It may be possible the increased rigidity of the MOR401 membrane influences 

FlaA regulation in a manner similar to low temperature stress, inducing its expression. 

Overexpression of FlaA has been observed to reduce intracellular virulence and produce a 

chaining phenotype at room temperature (105). This could be related to the role of 

BCFAs in modulating the virulence phenotype of L. monocytogenes, as observed through 

the reduced production of LLO in this mutant (28). Similarly, the actin-polymerization 
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protein ActA is associated non-covalently with the cell wall through a hydrophobic tail 

(36), and previous work has demonstrated defects in intracellular mobility of the 

MOR401 strain (28). Disturbed localization of this protein due to altered membrane 

dynamics could potentially contribute to the explanation of this phenotype.  

A final, potentially crucial factor for consideration which could not be directly 

assayed in this study is the role of peptidoglycan O-acetylation. This modification of 

NAM constituents has been associated with modulating the activity of autolytic enzymes, 

host immune evasion, and plays a key role in cell separation in B. subtilis (48, 52, 53). 

O-acetyltransferase enzymes responsible for this phenomenon are as yet uncharacterized, 

though they are predicted to be membrane associated, perhaps placing their activity 

within the purview of future investigations. In B. subtilis, O-acetylation of peptidoglycan 

appears to modulate the chaining phenotype in a somewhat quantity-dependent manner, 

as successive deletion of additional Oat genes produced longer chains than single 

deletions (53). While the association of O-acetylation with cell separation has not yet 

been made in L. monocytogenes, this could prove a productive avenue of inquiry. If the 

extent of O-acetylation correlates with the severity of cell chaining, it could represent a 

potential explanation for the intermediate chaining phenotype observed in MOR401. 

Conclusion and Future Directions 

Ultimately, our results appear to suggest alterations to either peptidoglycan 

hydrolase properties or cell wall structure, though it remains difficult to determine the 

relative contribution of each. Future investigations may seek to precisely quantitate the 

extracellular concentrations of proteins and hydrolases, a potential factor influencing cell 

separation. The peptidoglycan hydrolases p60 and MurA both have an established role in 
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this process and could be specifically explored for alterations in expression, extracellular 

presence, or activity on L. monocytogenes wild-type and mutant cell walls. Total cellular 

protein could also be a correlate of the MOR401 chaining phenotype, and this could be 

quantified. Assays of cytoplasmic membrane proteins could also provide information on 

transport efficacy and the protein repertoire of the cell. Methods detailing the isolation of 

this subcellular fraction have been described previously (88). Profiles of membrane 

proteins would complement the cell wall protein profiles performed here. 

Investigations into cell wall chemistry using purified cell wall components will 

also prove useful in identifying potential structural alterations, either in cross-linking, 

N-deacetylation, O-acetylation, or other modifications. These modifications can influence 

the activity of autolytic enzymes and cell separation processes. PCWs can be assayed 

with autolytic enzymes to more precisely identify whether structural variations are 

influencing autolytic activity. Alterations in teichoic acid structure could also contribute 

to the activity and localization of autolysins. Efforts chronicled here to refine the process 

of cell wall purification and PGN and TA extraction should facilitate these investigations. 

The specific influence of membrane fluidity on the localization of DivIVA may 

also be interesting to explore should future work suggest its involvement. Fluorescent 

tagging of DivIVA or MurA and p60 could reveal alterations in their cellular localization. 

Destabilization of this protein may suggest a mechanism for an apparent decrease in 

extracellular hydrolases necessary for cell separation. 
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APPENDIX 

SUPPLEMENTAL FIGURES 

1. Differential interference contrast microscopy of L.monocytogenes 10403S 

2. Differential interference contrast microscopy of L. monocytogenes MOR401  
grown in the absence of 2MB 
 

3. Differential interference contrast microscopy of L. monocytogenes MOR401 
grown in the presence of 2MB 
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Figure S1. DIC Microscopy of L. monocytogenes 10403S at 100x Magnification. Image 
Courtesy of Suranjana Sen. 
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Figure S2. DIC Microscopy of L. monocytogenes MOR401 Grown in the Absence of 2MB 
at 100x Magnification. Image Courtesy of Suranjana Sen. 

 

 

 

 

 

 

 

 

 

 

52 

 



www.manaraa.com

Figure S3. DIC Microscopy of L. monocytogenes MOR401 Grown in the Presence of 2MB 
at 100x Magnification. Image Courtesy of Suranjana Sen. 
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